Sources of contaminants in the Waikato-Waipa catchment

Bill Vant
Waikato Regional Council

Water quality monitoring networks

- River monitoring, 20 locations (WRC, NIWA)
 - Flow continuous (m³/s)
 - Concentration monthly (g/m³)
- Point sources, 19 locations ("consent monitoring")
 - Flow reported daily-to-monthly
 - Concentration daily-to-monthly

Load = Σ(flow × concentration) (g/s, kg/d, t/yr)

For example, various sites, 2003-12

	Flow (m³/s)	[Total N] (g/m ³)	Load (t/yr)
River sites			
Waikato-Taupo	158	0.1	339
Waikato-Narrows	235	0.5	3695
Waipa-Whatawhata	88	1.1	4069
Waikato-Tuakau	402	0.8	11,193
Point sources			
Hamilton sewage	0.48	12	189
Horotiu meatworks	0.02	114	90
Ngaruawahia sewage	0.02	14	8

Loads from point sources, 2003-12

Contaminant accounting (NPS-FW 2014)

- Determine load carried by river (A)
- Identify background or natural contribution (B)
- Add up contributions from all point sources (C)
- Calculate contribution from landuse, D (= A B C)

For example, nitrogen, Waipa catchment

71, vvaipa vviiatavviiata		+000 t/y1
 B, Background (= 3093 km² @ 0.3 t/km²/yr 	928 t/yr	
 C, Point sources 		66 t/yr
 Otorohanga sewage 	14	
 Te Awamutu sewage 	11	
 Te Kuiti sewage 	26	

<u>15</u>

66

D, Landuse (= A − B − C)

Te Awamutu dairy factory

Le Kuiti sewage

Sum, point sources

A Waina-Whatawhata

3075 t/yr

 $4069 \, t/vr$

Three sub-catchments, 2003-12

*Ignoring inputs from upstream catchments

Sources of nutrients, Waikato/Waipa, 2003-12

- Loads in river and from point sources are measured
- Point sources: about 7% of the overall nitrogen load and 18% of the overall phosphorus load
- Background 29% and 35%; landuse 61% and 45%

PS loads, changes during the decade

Phosphorus load (t/yr)

E. coli loads from some point sources

E. coli loads from some point sources

Mangaokewa @ Te Kuiti

Mangaokewa @ Te Kuiti, low flow

Mangaokewa @ Te Kuiti, low flow

Conclusions

- Monitoring data can be used to identify the contributions of different sources of contaminants
- Overall, point source discharges contribute 7% of the N and 18% of the P to the Waikato/Waipa (at Tuakau). Landuse – mostly pastoral farming – contributes about 60% and 45%, respectively.
- "Non point sources" include background or natural sources.
 These can be appreciable (c. 30%).
- Overall, point source discharges are a minor source of E. coli. But they can be locally important.

